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Data from studies of the effect of fat on in vivo flavor release were modeled to generate a predictive
model (R? = 0.71). The data included a range of values from the literature and 200 new data points
giving a total data set of 345 values; of these, 310 values were used as a data set for model
development, and the remaining 35 values were used as a test set for model validation. The model
could be used to estimate the differences in flavor delivery for samples with two different fat
contents. The hydrophobicity of the flavor compounds was represented in the model by including log
P. The model may provide a tool to aid in flavor reformulation between samples with different fat
contents. Sensory analysis showed that an orange flavor present in a high-fat food could be
reformulated for a low-fat food, giving a more similar flavor experience than in the absence of any

formulation changes.
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INTRODUCTION

Fat has a significant effect on flavor partitioning and solubility
in food products (/, 2). However, flavor molecules are not locked
away in fat droplets, but display a high level of mobility between
the fat, aqueous phases, and headspace, allowing their release (3).
Buttery et al. (/) described and modeled the effect of the oil
fraction and oil/water partition coefficient on the partitioning of
flavor in a static headspace situation. For lipophilic compounds
the presence of fat can substantially decrease their headspace
concentration, as the air/product partition coefficient decreases.

When methods such as atmospheric pressure chemical
ionization—mass spectrometry (4, 5) and proton transfer
reaction—mass spectrometry (6) became available, it was
possible to measure the effect of fat on flavor delivery during
consumption. A series of in vivo studies of the consumption of
foods with different fat contents showed that differences between
products in vitro are not reproduced in vivo (3, 7—14). In each
case the differences in in vivo delivery between a low-fat and a
high-fat sample were less than those that would be expected from
static headspace measurements (7). These differences between the
two techniques (in vivo and static headspace) can be substantial.
Shojaei et al. (/14) showed a difference in in vivo flavor delivery of
2.1-fold for ethyl hexanoate between high- and low-fat milk
samples, whereas a factor of around 15-fold would be expected
on a static headspace basis.

The differences observed between static headspace and in
vivo delivery are due to the dynamic nature of in vivo delivery
affecting mass transfer (/5). There is a strong relationship
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between the air/product partition coefficient and the efficiency
of in vivo flavor delivery. A decrease in the partition coefficient is
accompanied by an increase in the efficiency of flavor deliv-
ery (15). This offsets the effect of fat on flavor partitioning,
reducing the impact of fat on flavor delivery (16).

The many studies of the effect of fat on in vivo flavor delivery
provide a database of values that can be used for modeling flavor
behavior. The objective of this paper is to develop a predictive,
empirical model of the effect of fat on in vivo flavor delivery. Key
parameters for model development were the fat contents of the
samples themselves and the log P of the flavor compounds (the
log of the octanol/water partition coefficient), which is considered
to be a reasonable approximation to the oil/water partition
coefficient.

MATERIALS AND METHODS

Emulsion Preparation. Sucrose stearate (E-473) (Sisterna SP70,
S. Black Ltd., Herts, U.K.) was dispersed in bottled mineral water
(Deeside, Royal Deeside, Scotland; purchased from a local supermarket)
using a low-shear mixer (Yellow Line OST 20 Basic) for 30 min. The water
and sucrose stearate dispersion was then heated to 50 °C on a hot plate
(Fisher Scientific Heated Magnetic Stirrer FB15001, Loughborough,
U.K.) while being stirred with the low shear mixer. Once at 50 °C, the
rapeseed oil (deodorized rapeseed oil, Florin, Switzerland; provided by
Nestle) was added and blended using a high-shear blender (Silverson
Machines Ltd., Chesham, U.K.) for 15 min. This pre-emulsion was passed
twice through a two-stage valve homogenizer (Panda 2k, Niro Soavi
S.P.A., Sheffield, U.K.) fitted with a heated reservoir at 50 °C, at pressures
of 500 bar (first stage) and 50 bar (second stage). The final emulsion
contained 40% fat and 1% sucrose stearate. This emulsion was diluted
with water to give a range of fat contents to which a series of flavor
compounds were added.
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Compounds Used. Nonan-2-one, pyrazine, 3-methylbutanol, limonene,
cymene, heptan-2-one, and ethyl nonanoate were purchased from Aldrich
(Gillingham, Dorset, U.K.), purity =97%. Pyrazine and 3-methylbutanol
were added to all emulsions (0, 1, 3, 8, 15, 22, 30, and 40% fat) at a
concentration of 50 mg/L. The remaining compounds were added to water at
10 mg/L and to emulsions at 50 mg/L.

Flavor Release Studies. Three replicate samples (10 g) of each of the
flavored emulsions were consumed by two panelists only. Simultaneously,
their breath was sampled (30 mL/min) into an atmospheric pressure
chemical ionization source fitted to a Platform II mass spectrometer
(VG, Manchester, U.K.) through a heated (120 °C) deactivated fused silica
transferline 1 m x 0.53 mm i.d. The source was heated to 75 °C and
operated in positive ion mode (4 kV) at a cone voltage of 18 V.

Data were collected in selected ion recording mode with a dwell time of
0.02 s monitoring m/z 143, 81, 71, 137, 134, 115, and 187 for nonan-2-one,
pyrazine, 3-methylbutanol, limonene, cymene, heptan-2-one, and ethyl
nonanoate, respectively. Masslynx 3.2 (Micromass, Manchester, U.K.)
was used to determine the peak height of the maximum signal observed for
each sample. The differences in flavor release between samples were
calculated on the basis of the average peak height ratios of samples with
different fat contents, allowing for any differences in flavor volatile
concentration.

Sensory Analysis. Triangle Test. Single cream purchased from a
local supermarket (19.4% fat) was diluted with water and sugar (also
purchased from a local supermarket) added to give a final emulsion that
contained 1% fat and 5% sugar. This was flavored with either the high or
low level of orange flavor mixture added at 0.15% (Table 1). A panel of 21
untrained panelists was presented with three samples labeled with three-
letter codes, each set of three samples consisting of two samples at one
flavor level and one at the other. The panelists were asked to taste the
samples and decide which sample was different from the other two in a
forced-choice experiment. The panelist’s response was recorded and
statistical analysis performed using Fizz software (ver. 2.00, Biosystemes,
Couternon, France).

Modified Duo-Trio Test. Single cream purchased from a local super-
market (19.4% fat) was diluted with water and sugar (also purchased from
a local supermarket) added to give a final emulsion that contained 1 or
10% fat and 5% sugar. The 10% fat emulsion was flavored with the high
level of orange flavor and the 1% fat emulsion with either the high or low
level of flavoring, all at 0.15%. Consequently, there were two samples with
identical flavor addition and one different. Forty untrained panelists were
presented with the three samples labeled with three-letter codes. The
panelists were asked to taste the samples and decide which of the 1% fat
emulsion samples was the most similar in flavor to that of the 10% fat
emulsion sample in a forced-choice experiment. The panelist’s response
was recorded and statistical analysis performed using Fizz software.

Data Modeling. The effect of different lipid contents on the release of
volatiles was modeled using Design Expert ver. 7.0.3 (Statease, Minnea-
polis, MN).

Log P Estimation. Log P was estimated using the KOWWIN program
ver. 1.67 within EPISuite ver. 3.20 from the U.S. Environmental Protec-
tion Agency.

RESULTS AND DISCUSSION

Model 1: Existing Data. The range of data available for
modeling the effect of fat on in vivo flavor delivery varies not
only in the matrices and the equipment used for the analysis, but
in the number of panelists and the degree of replication (3,7—14).
The quality of the measure of intrasample differences should
increase with greater replication and panelist numbers. In one
instance (/4), 98 panelists made four replicate assessments of the
in vivo differences in ethyl hexanoate delivery from low-fat and
high-fat milk, a total of 392 replicate assessments to produce one
estimate of the effect of fat on flavor delivery. This approach
should provide high-quality data for modeling, but would be too
time-consuming for the generation of a large database of values.

The majority of the data available is based on far fewer
panelists and replicates. However, in model development, it is
generally better to have a wider range of data varying in sample
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Table 1. Amounts of Compounds (Milligrams) Combined To Make either a
Low- or High-Flavor Formulation?

compound low factor high
hexanal 18.8 1.5 28.2
octanal 9.4 2.8 26.3
decanal 4.7 49 23.0
ethyl hexanoate 11.8 2.9 34.2
linalool 235 4.2 98.7
f-ionone 24 4.0 9.6
trans-p-menthane-8-thiol-3-one 24 2.0 48
ethyl butyrate 50 1.5 75
limonene 2000 3.8 7600

@The ratio between them (factor) was calculated by substituting the appropriate
log Pand fat content values into eq 3 and then calculating the ratio between the two
release predictions. Each formulation was made up to 10 mL with ethanol. All
compounds were supplied by Aromco (Royston, U.K.).
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Figure 1. Actual and predicted lipid effect for the initial data set, which
comprised a modeling set of 129 values and a test set of 16 values (eq 2).

type, flavor compound, and fat content than a higher degree of
replication and panelist number, which often limits this diversity.
This results in a broader model with wider applicability.

Data from the literature (3, 7—I4) and a small amount of
unpublished work (release differences for eight compounds in 3
and 22% fat mayonnaise) were combined, and a lipid effect (LE)
value was calculated (eq 1)

lipid effect (LE) = flavor delivery FC2/flavor delivery FC1
()

where FC2 is the fat content (%) of the higher fat content
sample and FC1 is the fat content (%) of the lower fat content
sample.

The lipid effect values were modeled using Design Expert
from Statease (based on multiple linear regression), using three
values, log P, FC1, and FC2. A total of 129 data points were
used for the development of the model with an additional 16
separate values used as a test set to check the predictive power
of the model. Potential modeling terms were either kept in the
model or excluded, on the basis of the statistical significance
of their contribution to the model, such that terms with a
probability of P < 0.05 were retained. The equation generated
(eq 2) had 10 terms in addition to the intercept, including
interactive terms between the three factors and quadratic and
cubic components.

LE = 1.35-0.093 x log P+0.11 x FC1 —0.062 x FC2 +
0.027 x log P x FC1 —0.0096 x log P x FC2 —0.0046 x
FCI x FC2—0.11 x log P* +0.0054 x FC2? +0.019x

log P*—0.00011 x FC2? (2)
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Table 2. Data and Model Predictions (Based on Equation 2) of the Impact of Changing Lipid Content (from Fat Content 1 to Fat Content 2) for the Test Set
Compounds
compound log P FC1 (%) FC2 (%) actual lipid effect predicted lipid effect”
diacetyl -1.34 0 0.033 0.83 1.23
ethanol —0.31 0.2 10 1.18 1.22
butan-2-one 0.29 0 1 0.95 1.25
butan-2-one 0.29 0 15 0.88 1.20
benzaldehyde 1.48 0 3.8 0.71 0.82
ethyl butyrate 1.85 2.7 3.8 0.68 1.09
heptan-2-one 1.93 0 5 0.48 0.63
heptan-2-one 1.93 2.5 5 0.65 0.98
heptan-2-one 1.93 5 15 0.68 1.03
3-methylbutyl acetate 2.25 0.5 30 0.33 0.31
ethyl pentanoate 2.34 3 22 0.61 0.64
ethyl hexanoate 2.83 5 15 0.60 0.78
octanol 3.00 5 10 1.04 0.89
nonan-2-one 3.14 25 10 0.46 0.49
ethyl octanoate 3.81 0 5 0.10 0.14
menthyl acetate 4.39 0 8 0.04 —0.02
?Predicted from model.
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Figure 2. Distribution of experimental points for the initial modeling (a) and the final data set (b) with respect to the fat contents of the different samples. The
numbers indicate multiple samples occurring at the same two fat contents; these are either replicates or compounds with different log P values.

The values obtained from eq 2 correlated with the modeling
data set with an R* of 0.73 (Figure 1), which is reasonable given
the diverse origins of the data set and the fact that it is formed of in
vivo flavor delivery measurements. There is, however, the possi-
bility with such complex modeling exercises to generate an
equation that correlates with the data set but has no real
predictive value. Consequently, the model was also used to
predict a test set of LE values not previously used in the modeling
exercise. The test set was predicted with an R* of 0.83, but the
regression line had a slightly higher slope and intercept than that
of the original model (Figure 1; Table 2). This demonstrated that
the model had some predictive power and was not simply a
spurious statistical correlation.

Overall, it appeared that it had been possible to model the data
in one global model, despite its diverse origins. No one data set
stood out as different from the rest, which would have indicated
significant differences between the values reported by different
research groups.

Development of Model. The model (eq 2) was limited by the
range of sample fat contents included in the data set with few
values at higher fat contents. Figure 2a shows the distribution of
data points plotted as a function of the FC1 and FC2 dimensions.
The data points are further spread by the third dimension,
log P. In the FC2 dimension, there are only 12 values with an
FC2 of 30%, whereas at an FC2 of 22%, 7 of the 10 values occur

at just one value of FC1. Equally in the FC1 dimension there are
only four values at an FC1 pf > 5%.

Clearly the data density at higher fat contents is limiting the
strength of the model and its range of applicability. Models are
usually best in the middle of the experimental design space (e.g., at
mid log P values) where trendlines are supported by surrounding
data. They are weakest around the periphery (extremes of log P),
where there are fewer supporting data. Additional data were
generated over a range of fat contents (0, 1, 3, 8, 15, 22, 30, and
40%) using a series of compounds with different log P values
(Figure 2b). Three replicates of each fat content/compound
combination were consumed by two panelists to generate a total
of 200 new data points. The degree of replication and the number
of panelists were limited but compensated for by the range of new
values added across the experimental design space. This was
particularly true for the higher fat contents, which were not
adequately represented in the data obtained from the literature
(Figure 2a). It was hoped that broadening the range of lipid
contents and increasing data density at the extremes would make
the model more robust.

Model 2: New and Old Data. The modeling exercise was
repeated with the new data set, which now comprised
310 values for the model itself and 35 separate values that were
used as a test set. The equation that was generated (eq 3) was
similar to that of the first model in the range of modeling
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Figure 3. Actual and predicted lipid effect for the final data set, which
comprised a modeling set of 310 values and a test set of 35 values.

terms included, with a total of 14 terms in addition to the
intercept.

LE = 1.41+0.082 x FC1 —0.037 x FC2—0.11x
log P—0.0069 x FC1 x FC2+0.052 x FC1x
log P—0.011 x FC2 x log P+0.0019 x FC2% = 0.13x
log P> =0.00071 x FC1 x FC2 x log P+0.00012 x FCI x
FC2% —0.0041 x FC1 x log P> +0.0023 x FC2 x
log P> —2.7E—05 x FC2* +0.023 x log P*  (3)

The correlation (Figure 3) between the actual modeling data
and the values predicted by eq 3 was again reasonable (R*> =
0.71), given the diversity of the data and potential variation in
analytical measurements. The results of the test set had a slightly
lower R* (0.63) but showed a slope and intercept close to that of
the y = x model equation, showing that this model also had good
predictive power and was not a spurious statistical correlation
(Figure 3; Table 3).

The model has three dimensions FC1, FC2, and log P. The
effect oflog P onin vivo flavor delivery can be seen by plotting the
effect of the two fat contents at different values of log P (Figure 4).
In Figure 4a the LE at a log P of 0.0 is shown. The lower right
sector is grayed to show there are no data in this part of the design
space because FC2 was always greater than FC1. The values near
the lines on the contour plots show the LE values predicted by
eq 3 across the design space. In the case of Figure 4a the values are
around 1 with few contours, showing little effect of fat content on
flavor delivery of compounds with a log P of 0.0, which is what
might be expected.

As the log P is increased to 1.75, compounds become more
hydrophobic and values near the contour lines decrease, showing
anincreased LE. The lowest values on the contour lines are at low
values of FC1 and high values of FC2. This is consistent with the
greatest difference in flavor release occurring between the lowest
fat contents (FC1) and the highest (FC2). When both FC1 and
FC2 had high lipid contents, there were smaller changes in flavor
delivery (upper right sector of Figure 4b). This shows that there
is less effect of increasing fat content on in vivo flavor delivery
if there is already some fat present. Increasing log P to 4.0
(Figure 4c) showed the same trends as observed at a log P of
1.75; the lipid effect was, however, more pronounced.

Along the FC1 = FC2 line there are contour values of > 1.0,
suggesting more release from a second sample with a slightly
higher fat content than the first. In this particular part of the
design space there are no data values (Figure 2b) that result in this
phenomenon. A series of values (LE = 1) could have been added
in for a range of FCl = FC2 data points with different log

Linforth et al.

Table 3. Data and Model Predictions (Based on Equation 3) of the Impact of
Changing Lipid Content (from Fat Content 1 to Fat Content 2) for the Test Set
Compounds

actual predicted
compound logP  FC1(%) FC2(%) lipideffect lipid effect
diacetyl —1.34 0 0.033 0.83 1.27
ethanol —0.31 0.2 10 118 1.27
pyrazine —0.06 1 3 0.94 1.38
pyrazine —0.06 3 40 1.08 1.31
pyrazine —0.06 30 40 1.19 1.24
butan-2-one 0.29 0 1 0.95 1.33
butan-2-one 0.29 0 15 0.88 1.1
3-methylbutanol 1.16 1 15 0.70 0.82
3-methylbutanol 1.16 8 22 1.03 0.95
benzaldehyde 1.48 0 3.8 0.71 0.87
ethyl butyrate 1.85 2.7 3.8 0.68 1.10
heptan-2-one 1.93 0 5 0.48 0.66
heptan-2-one 1.93 0 30 0.18 0.37
heptan-2-one 1.93 2.5 5 0.65 0.99
heptan-2-one 1.93 3 22 0.35 0.54
heptan-2-one 1.93 5 15 0.68 0.81
heptan-2-one 1.93 22 30 0.98 0.98
hexenyl acetate 2.25 0.5 30 0.33 0.26
ethyl pentanoate 2.34 3 22 0.61 0.41
ethyl hexanoate 2.83 5 15 0.60 0.60
octanol 3.00 5 10 1.04 0.80
nonan-2-one 3.14 0 30 0.08 0.00
nonan-2-one 3.14 25 10 0.46 0.47
nonan-2-one 3.14 3 22 0.30 0.23
nonan-2-one 3.14 22 30 0.84 0.88
ethyl octanoate 3.81 0 5 0.10 0.17
cymene 410 0 15 0.08 0.02
cymene 4.10 3 8 0.41 0.57
cymene 4.10 15 30 0.86 0.64
ethyl nonanoate 4.30 1 3 1.12 0.44
ethyl nonanoate 4.30 3 40 0.14 0.08
menthyl acetate 4.39 0 8 0.04 0.13
limonene 4.48 0 3 0.36 0.25
limonene 4.48 1 30 0.86 0.17
limonene 4.48 8 40 0.48 0.27

P values. This would have weighted the trendline at FC1 = FC2
toward a value of 1.0, effectively comparable to forcing a trend-
line through the origin on a standard two-dimensional graph.
These values were not included because these values would be
artificial and not experimentally generated and as such lacked
true experimental variation.

In Figure 3itis clear that there were some major outliers in both
the model data set and the test set. One of these is for a limonene
test set sample, as the fat content varied form FC1 = 1.0 to
FC2 = 30. The actual experimental data point was a LE of 0.86
compared with a predicted lipid effect from eq 3 of 0.17. The other
main test set outlier was ethyl nonanoate as fat increased from 1
to 3%, for which the predicted LE was 0.46 compared with an
actual measured value of 1.12. Either the model has predicted
these values poorly or they are examples of experimental error
(poor actual values). An increase in the delivery of ethyl non-
anoate with increased fat was certainly not expected, because this
compound is hydrophobic (log P = 4.30) and this is not in line
with the vast majority of the data. These results are most likely
outliers in the actual values, which might be expected with a data
set of 345 values.

It would be very tempting to strip off the outliers observed in
Figure 3 and focus on the core of the data; however, that is a poor
scientific practice. The poor values in one direction should be
balanced by others in the opposite direction, with the model lying
between. This highlights the possible benefits of a model rather
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Figure 4. Effect of differences in lipid content on in vivo volatile release predicted by the fat content and log Pmodel at three log Pvalues: (a) 0.0; (b) 1.75; (¢)

4.0. The model (eq 3) was based on 310 data points.

than actual measurements. The model gives a prediction based on
the averages of a body of data, whereas making a measurement to
find the actual value is in itself inherently associated with error.

The LE value with the greatest level of replication (392
replicate values for 98 panelists) showed an actual LE of 0.48
for ethyl hexanoate when 3.8% fat milk was compared with 0.1%
fat milk (/4) (see the Supporting Information). The predicted
value in this case was 0.42, showing close agreement between
experimentation and model prediction.

In addition to experimental and modeling error, there is the
potential error in values such as log P, which is in itself the
product of a model. The log P value used in this modeling exercise
was from EPISuite, which is available from the U.S. Environment
Protection Agency free of charge. The log P predictions from this
model correlated closely (R* = 0.86) with experimental oil/water
partition coefficient measurements (/7). This combined with its
availability made it the log P source of choice. There may be some
potential for including other modeling terms in the LE models;
however, there may be modeling limitations due to experimental
variation in the data set. In addition, other models such as those
for estimating the air/water partition coefficient may be asso-
ciated with greater errors. The models of log P are potentially the
most researched and robust, due to the pharmaceutical industries
interest in log P for modeling drug uptake. They are also the most
applicable to modeling changes in in vivo flavor delivery because
they numericize the hydrophobicity of molecules.

Few data on the effect of fat in flavor reformulation have been
published. One example of reformulating between high- and low-
fat ice creams is given by Cheetham (/8). There is no supporting
information on the models used or method of flavor release
assessment allowing further evaluation. Equation 3 was used to
predict the reformulation differences described for the 0 and 15%
fat content products. The plot of these values with those pub-
lished shows a reasonable correlation (Figure 5) with two clear
exceptions. These differences are due to differences in log P
estimation. EPIsuite (used to calculate the log P values for the
current models) typically gave estimates of log P higher than
those listed in Cheetham (/8), except for the two outliers, both of
which had lower EPIsuite log P values than those originally
published. This emphasizes the reliance of the lipid effect model
on the quality of the log P model. It also highlights the fact that
when a log P value is used in a model equation, it is important to
obtain it from the same source as those used to generate the
original model.

All of the lipid effect data used during the modeling exercise
were from liquid or semiliquid samples. There are few results for
more solid food systems such as baked goods. Dimelow (19)
measured the in vivo release of flavor compounds from a baked
crumb coating and the amount of flavor retained during the
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Figure 5. Relationship between the estimated lipid effect from eq 3 with
published formulation differences for low-fat (0%) and high-fat (15%)
vanilla ice cream (78).

baking process. Correcting for flavor losses, the LE values for
anethole, pinene, and carvone for high-fat (7%) and low-fat
(0.4%) crumb samples were all similar, 0.24, 0.24, and 0.25,
respectively. The differences predicted for these compounds
between 7 and 0.4% fat systems using eq 3 would be 0.23, 0.20,
and 0.30, respectively. Similarly, Brauss (§) studied anethole
release from high-fat (18%) and low-fat (4%) biscuits, finding a
LE of 0.23 (after correction for losses during baking) compared
with a model prediction of 0.35. Clearly, the measured lipid effects
are similar to those predicted by the model (eq 3). However, a
larger data set would be needed to fully evaluate the use of the
model for solid food systems.

During the modeling exercise, no attempt was made to
compensate for difference in fat particle size, largely because it
is unknown and undefined for the majority of the data set. There
will have been a variation in droplet sizes over the data set and the
model could be thought of as taking the average line through this
variation also. Few studies have examined the effect of droplet
size on in vivo delivery. Linforth (15) did find differences in
delivery of factors of 2.6 and 1.7 for ethyl hexanoate and octanol
in lipid emulsions that had either been crudely blended or
homogenized at high pressure, with less release from the crudely
homogenized sample. This gives some idea about how much
influence this might have on flavor delivery.

A further factor not taken into account during model develop-
ment was the emulsifier itself. There may be interactions between
the emulsifier and aroma compounds in emulsified systems, either
nonspecifically, as a result of the physical properties and concen-
tration of the emulsifier, or through chemical reaction.

Further advances in log P estimation may produce better
quality values for modeling. The current data set is available
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from the authors for future researchers to use with improved
terms or additional modeling factors to try and develop the model
further.

Application of the Model. One of the challenges for the food
industry is the reformulation of flavors between products with
different fat contents, to give a similar flavor delivery to the
consumer. This can rely on sensory assessments or models such as
eq 3, or each compound can be measured to give a guide to
reformulation. Often scientists prefer measurements over models,
but measurements can also be associated with errors. A high level
of replication can minimize this. However, this is time-consuming,
the equipment required is expensive, and some flavor compounds
have such low odor thresholds that they will be unpalatable at
concentrations at which they can be detected.

A flavor reformulation study was carried out using an orange
flavor that was selected because it contained a high proportion of
hydrophobic compounds; delivery during consumption will vary
with fat content. Diluted cream was chosen as a simple real-world
emulsion system, and this was diluted to give fat contents of 1 and
10%, both of which had a similar appearance (compared with a
sample with 0% fat).

Table 1 shows the two levels of the orange flavor formulation
and the reformulation factor between them. According to eq 3,
the high level of flavor in the high-fat product should give the
same flavor delivery as the lower flavor level in a low-fat product.
The differences in flavor delivery were investigated sensorially.

In the first experiment, a triangle test was used to confirm that
the there was a perceivable difference in orange flavor intensity or
character when the two formulations were applied to just one
sample matrix. The 1% fat system was used for this test because it
represented the target product. If panelists could not detect the
difference between the two flavor formulations in the cream taste/
aroma background, then there would be little point in further
flavor reformulation.

Twenty-one untrained panelists carried out a triangle test to see
if they could tell the difference between the low- and high-flavor
formulations in the 1% fat system. Twelve of the 21 were able to
identify the sample with the different flavor level. This was
statistically significant (P = 0.021), demonstrating that the two
flavor formulations delivered perceivably different experiences.
An untrained panel was selected for both this and the following
sensory test to reflect the discrimination of typical consumers.

Following this, a duo-trio test was carried out, to see which of
the two 1% fat samples (the one with the lower or the one with the
higher flavor level) was perceived as most similar to the 10%
fat system with the original high-flavor level. Of 40 panelists,
26 judged that the 1% fat sample with the lower flavor level was
the most similar of the two to the 10% fat sample with the higher
flavor. This was statistically significant (P = 0.40), demonstrat-
ing that the reformulated flavor in the lower fat product was
indeed a closer match to that of the original.

The models and the reformulation study were based on in vivo
peak height data rather than area data. The shape of the release
profile (area/height ratio) will, however, have varied between
samples of different fat contents dependent on the log P of the
compound. The ability of the peak height model to estimate the
reformulation assessed sensorially may indicate that the max-
imum intensity of aroma release (peak height) is more important
to perception than the shape of the profile.

No model is ever perfect, but the final model (eq 3) does appear
to have a capacity for predicting flavor delivery differences, draws
together diverse sets of data, and may provide a tool in flavor
reformulation. The model applies to high- and low-fat foods with
data covering a wide range of log P values and fat contents. The
systems were, however, typical of many experimental systems,
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fluid and reasonably homogeneous. Although the model ap-
peared to show a good prediction of the effect of fat in two solid
sample types, insufficient data were available for a true validation
of the model with solid food systems. Consequently, the applica-
bility of the model for solid foodstuffs is less certain. In solid food
systems, fat may exist in solid, liquid, or, crystalline forms, and
there may also be phase separation. Such factors are likely to exert
further influences on flavor delivery.
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